gasilreno.blogg.se

Google translate speech to text
Google translate speech to text






google translate speech to text
  1. #GOOGLE TRANSLATE SPEECH TO TEXT VERIFICATION#
  2. #GOOGLE TRANSLATE SPEECH TO TEXT SOFTWARE#

To the best of our knowledge, Translatotron is the first end-to-end model that can directly translate speech from one language into speech in another language. Translatotron translation (original speaker’s voice) Translatotron translation (canonical voice) The Translatotron output that retains the original speaker’s voice is trained with less data than the one using the canonical voice, so that they yield slightly different translations. In this example, Translatotron gives more accurate translation than the baseline cascade model, while being able to retain the original speaker’s vocal characteristics. The audio clips below demonstrate the performance of Translatotron when transferring the original speaker’s voice to the translated speech. Conditioning the spectrogram decoder on this encoding makes it possible to synthesize speech with similar speaker characteristics, even though the content is in a different language.

#GOOGLE TRANSLATE SPEECH TO TEXT VERIFICATION#

The speaker encoder is pretrained on the speaker verification task, learning to encode speaker characteristics from a short example utterance. This feature leverages previous Google research on speaker verification and speaker adaptation for TTS. You can listen to more audio samples here.īy incorporating a speaker encoder network, Translatotron is also able to retain the original speaker’s vocal characteristics in the translated speech, which makes the translated speech sound more natural and less jarring. In this case, both systems provide a suitable translation and speak naturally using the same canonical voice. Though our results lag behind a conventional cascade system, we have demonstrated the feasibility of the end-to-end direct speech-to-speech translation.Ĭompared in the audio clips below are the direct speech-to-speech translation output from Translatotron to that of the baseline cascade method.

google translate speech to text

We validated Translatotron’s translation quality by measuring the BLEU score, computed with text transcribed by a speech recognition system.

google translate speech to text

However, no transcripts or other intermediate text representations are used during inference. During training, the sequence-to-sequence model uses a multitask objective to predict source and target transcripts at the same time as generating target spectrograms. It also makes use of two other separately trained components: a neural vocoder that converts output spectrograms to time-domain waveforms, and, optionally, a speaker encoder that can be used to maintain the character of the source speaker’s voice in the synthesized translated speech. Translatotron is based on a sequence-to-sequence network which takes source spectrograms as input and generates spectrograms of the translated content in the target language. Translatotron goes a step further by demonstrating that a single sequence-to-sequence model can directly translate speech from one language into speech in another language, without relying on an intermediate text representation in either language, as is required in cascaded systems. Many approaches to further improve end-to-end speech-to-text translation models have been proposed recently, including our effort on leveraging weakly supervised data. In 2017, we demonstrated that such end-to-end models can outperform cascade models. The emergence of end-to-end models on speech translation started in 2016, when researchers demonstrated the feasibility of using a single sequence-to-sequence model for speech-to-text translation.

google translate speech to text

Dubbed Translatotron, this system avoids dividing the task into separate stages, providing a few advantages over cascaded systems, including faster inference speed, naturally avoiding compounding errors between recognition and translation, making it straightforward to retain the voice of the original speaker after translation, and better handling of words that do not need to be translated (e.g., names and proper nouns). In “ Direct speech-to-speech translation with a sequence-to-sequence model”, we propose an experimental new system that is based on a single attentive sequence-to-sequence model for direct speech-to-speech translation without relying on intermediate text representation. Dividing the task into such a cascade of systems has been very successful, powering many commercial speech-to-speech translation products, including Google Translate. Such systems have usually been broken into three separate components: automatic speech recognition to transcribe the source speech as text, machine translation to translate the transcribed text into the target language, and text-to-speech synthesis (TTS) to generate speech in the target language from the translated text. Speech-to-speech translation systems have been developed over the past several decades with the goal of helping people who speak different languages to communicate with each other.

#GOOGLE TRANSLATE SPEECH TO TEXT SOFTWARE#

Posted by Ye Jia and Ron Weiss, Software Engineers, Google AI








Google translate speech to text